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Area ilistortion under quasiconformal mappings 1)

l. Introd,uctooz. Suppose that f is a sense-preserving plane quasi-
conformal mapping, in the sense of Ahlfors and Pfluger, of a domain D .

Then it, follows from the work of Mori [f0] and Morrey [11] that "f p.e-
serves sets of plane measurezeroin D , thatis, if E cD and m(E): g 

,

then m(f(E)) : g . (See also [6] and [12].) In connection with deeper
studies of the degree of regularity of quasiconformal mappings, it is of
interest, to investigate to what extent one can say that m(l@) ) is small
whenever m(E) is small. Obviously this problem is meaningful only if
/ is normalized in some way. For example, one might require that / map
the unit disk t/ onto itself so that /(0) : 0 . With this normalization,
Bojarski [3] made the following observation. There erist a pair of func-
tions of K, a(K)>O and, b(K)>0, suchthati,f f i,sK-quasiconfor-
rual, then

(1.1)

for each measurable set E C U .

Bojarski derived inequality (I.I) from an important theorem on the
integrability of the derivatives of quasiconformal mappings. This latter
result was established by him using a fundamental inequality, due to
Calder6n and Zygmttnd [4], which relates tlne L, norms of a function and
its Hilbert transform. In the present paper we shall use a parametric re-
presentation2) for quasiconformal mappings, similar to Loewner's representa-
tion for conformal mappings, to study the above mentioned problem ab oao
and to prove the following slightly more precise form of (1.1).

Theorem 1. There erists u constant q, and, a functi,on b(K) , where
r(a 40, b(K)>O, anil, b(K):r+O(K-t) as K--+1, such
that, if f is a K-quasiconformal m,apping of U onto i,tself wi,th f(0) : O ,
then

(1.2) m(f(E)) <'(K\(Y(E)\"*xt '\ xt /

for each measurable set E c U .

1) This research was supported in part by the Air Forco, Grant AFOSR,-39B-68,
and by the National Science Foundation, Contracts GP-4ISB, GP-Ig8g, and Gp-8904.

2) W'e would like to acknowleCge helpful Ciscussions vith Professor Loewner
concerning this represention.
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In a recent paper [8], Lehto has studied the integrability question for
plane quasiconformal mappings. Using his results, one also can show that
there exist a pair of functions a(K) and b(K) for which (1.1)holds, where
d.(K) : K-" and o is a constant, a 2 L. However, this method does
not yield an explicit upper bound for the best possible a , rror does it give
much information about the function b(K) .

Now suppose that / is a K-quasiconformal mapping of [/ onto itself,
normalized so that /(0) : 0 and /(I) : I . Then we can extend / by
reflection in 0U to obtain a ff-quasiconformal mapping of the extended

plane O with /(@) : oo . The complex dilatation p : frlf , will satisfy
the symmetry condition

(r.3) t e) - p(Lll)zzlzz

a.e. in the finite plane f) . For convenience of notation, we let B6 denote
the class of all such mappings f . In the proof of Theorem l, it is obviously
sufficient to consider only / € §*.

2. The parametric represenlat'ion. We shall establish Theorem I using a
parametric representation, first derived by Shah Dao-shing in [5]. How-
ever, since this paper is relatively inaccessible, we first shorv how this
representation can be obtained from some recent results due to Ahlfors
and Bers [2].

Suppose that, f is in §" and has complex dilatation p , and set

where sgnzu:Wif w*O,q and sgn?o:0 if w:0 or co.

Next let g : g(2, t) be the quasiconformal mapping of ä which has z

as its complex dilatation and is normalized so that SQ ,t) : 0 , g(1 , t) : I ,

and g(oo,l) : oo. Since a(2,0):0 and a(z,T):p(z), weseethat
g(2,0): z and g(2, T):f(z). Moreover from (2.1) it is obvious that l
satisfies a symmetry condition like (1.3), and hence g maps [/ onto itself
for eaeh f . Frorn (2.1) we have

0tt

rvhere

(2.2)
Ay

at
(*gr,r) ry(I lrlr)
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0y
Since At is continuous in f and

that

0g o(z.t { /t) - g(z,t)
e,@,,) 

: llll lt
0o

uniformly on each compact set in O , that * has generalized derivati-

ves with respect to z and 2 which are locally Lz-inlegrable, that

0y

at

(2.3)

(2.4)

for each compact set E c Q , and that

e),:,(x),+!n,
?o 0o

Nowset C:;og-L: n{O-,,t). Then ( hasgeneralizedderi-

vatives which are locally .t2-integrabr",*: C o g : C(g, l) , and by the

chain rule

(2.5) (#), : (C,. s)s, t c," s)s,, e),: (e," s)s, t G,. s)s, .

(See, for example, Lemma 10 of l2].) Since gz: yg,, combining (2.2),
(2.4), and (2.5) yields

Att 1 arctanh lzl(2.6) iz"Q:A L _Wsgn(g,)': (sgn p) t sgn(g,)z.

Inparticular,weseethat lerl<$ in Q. Alsosince g(0,t):0 and
SG,t):1, wehave ((0,t):e0,t):0, whilethefactthat g maps
[/ onto itself implies that

(2.7) 
""('3*) 

:,
for ze0U.
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X'inally, since /(z) : g(z , T) , we may think of / as being generated
as a solution ofthe differential equation

0o(2.8) fi:C(t,t), zeQ,0<t<7,

subject to the initial condition g(z , 0) : z , where i satisfies the above
Iisted conditions. This is essentially the parametric representation derived
by Shah Dao-shing in [5] for smooth mappings in §6.

3. Rate of change

tl and that f e §6 .

A(t)

upper bound for A(f) in terms of ,4(0) .

Schwarz inequality it follows that

dA l't(ls,@,t+at)lz-1s,@,t)?::lim I lt"dt - Ll]'oJ I \- lt

set in

our problem is to obtain an

tr'rom (2.3) , (2.5), and the

of a,rea. I{ow suppose that E is a measurable
I{ext let g be defined" as in section 2 and set

: m(s(n , t))- I I ls,l, is,i\do .

:) d,o
lgr@ , t)it)

Z
igu@,t + Å t,

l-

7

- , .[ !n"(r; 
(X)

(3'r) 
:'llRe((," s)(til'-ls)')ito

.rllRe(.do.
e(E,t)

We may interpret, this formula by thinking of g as a flow on J2 which
carries U onto itself. The velocity profile of this flow is given by (2.8),
and hence the outward normal component of the flow across dg(E , t) al
a point z e 0g(8, f) is equal to

e@ ,t) + #: u" (+ e(, n h),
where il,z is parallel to the tangent vector to )g(E , t) at z . Thus if i
is sufficiently smooth and if E has a piecervise .qmooth boundary, the
total outward flow across dg(E , f) is given by

å1,)0.
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* (+ I , 4:2Re (l I c.d,)
1s@,t) e@,t)

Since this total outward flow is just the rate of change of A , we have an
alternative derivation for formula (3.I).

Now since (u is bounded in f), we havo

(3.2) e@,t):,t@,r) -: l,l ',r*,r(;\ - *)0,,
where 'rp is continuous in O and analytic in U for 0 <t <T . Since

4(0,r) :0, itfollowsthat rp(0,f) :0. Thus rpiz isanalyticin U,
and from (2.7) we obtain

(3.3) ",(r!=): u" (: l"i c-*-, t) 6-*" _ r,*)
for z e 0 U . Tlne function on the right hand side of (3.3) is also analytic
in [/, and hence we conclude that

(8.4) ?p(z,t):: I I e."@,t) #-rd,o t iz@(t)
U

for ze IJ ar,d 0<r<?, where @ isrealandcontinuous.Since l(rl <å
in (J , there exists an absolute constant c ) 0 such that

a(3.5) lP"e rp,(z , t)l < 2

whenever lzl 3ä and 0<t<7.
From (3.1) and (3.2) we obtain

(8.6) #: ll ""fiao+, ll r,e,p.d,o,

e@,t) e@,r)

where fr is the Hilbert transform of. g : 2 e , Xu ,

L f I q(w,t)ö(",t):19-; JJ d.;zdo,'P-2,>r

alnd. Xu is the characteristic function of. U . It is not difficult to verify
that

(87) llrro,:llei,aoaa
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wheneYer
h : Xs(E ,r)

( 3.8)
dA_<.

h is bounded and has

, we obtain
compact support. Hence if we take

rf
do*2 JJ Rey,,d,o

g(E , t\
l,l ti,p,qr

from (3.6) and (3.7).

4. Proof of Tlteorem 7.In order to make use of (3.8),

to the followirg inequalit;r, which is implicit in the vt ork
Zyg*und t4l and which will be established in section 5.

Theorem 2. There em'ist u pair of constants cL and b ,

0 <b <2, such, tltat

we must appeal
of Calderdn and

1(a <40 ancl

(4. 1) l,l lfuldo l am(E) los ,@, + bm(E)

for each measurable set E c U .

We now complete the proof of Theorem I in two steps. Suppose first
thab E is a measurable set in lzl ( 8-*. Then since g is a /(-quasicon-
formalmappingof U ontoitself with g(0,t):0, g(E,l) liesin izi<$
by a well known distortion theorem due to Hersch and Pfluger [7]. From
(3.5), (3.8), and (a.r) we have

dA lt
dr <aAtogV*(U+c)A

for 0 { t <T, and with a change of variables and integration we obtain

e-")xry)'-"

with b(K) :-- bo(K) , where

1+(b+c)(K-1) +o(K 1)

as K-+1.
I{ext suppose that Z is any measurable set in U , and for each I ,

l<r< oo,let Z bethedisk lzl <7 andset

M - max if@l
l'l:t

frt > l't* ,

nl - min lf @)l ,

lzl:l

Then it is easJr to verify that

(1.4) rn { l* ,
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while by a distortion theorem due to Lehto, Virt'anen, and Väisälä [9],

(4.5) M<)"(K)m,
where 1(K):|+O(K-L) as K->1. Lel h map U conformally
ofio f(V) so that ft,(0) : 0 . Then the SchwarzT,alflrna, applied to h-L(mz)

and to h(z)lM implies that

(4.6) lh(z)llmlzl
and, with (4.6), that

(4.7) lh'(z)l < ar ,lh(",!l,!tP < M +":;4L - lz,' 'nL" - L

for zeh-|(U). r

Now set I : l,(K): max (8 , 3" 1(K))". Then (a.4) and (a.5) imply

that m > 3å , and with (a.7) we conclude that,

(4.s) rn(f(E)) : I I th'(z)1, d,o I Mz (") **-'" f(E)) .

å-1"_f(E)

If we apply what was proved earlier to the K-quasiconformal mapping

fo@) - h-L 
" f(l z) , we obtain

(4.e) ,y+9 <bo(K)(#)*",

where bn(l() is as in (4.3). X'inally combining (4.4), (4.5), (a.8), and (a.9)

yields (1.2) with

(4.10) b(K) : bozql (Ky|ze-r-e .

Since each factor on the right hand side of (a.f0) is of the form I + O(K- 1)

as r(-> 1 , we conclude thaf b(K) is also of this form.
We have established (1.2) with a,:40. lf f(z): (sgn z)lzftr andif

Z is any disk in I/ with center at the origin, then

nx(f(E)) lm(D1\tr«

" 
:\ 

" ) '

and hence we must have a ) I in (1.2). Thus assuming Theorem 2,we
have completed the proof of Theorem l.

5. Proof of Theorem 2. It rcmains for us to establish Theorem 2. We
begin by quoting a special case of a result used by Calderdn and Zygmund
(Lemma I of [+]).
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Lemma 1.
andtltat 0< t

{Gr} such that

(5"1)

(5.2)

t m(tr fi Gn)

nL(E)

m,(E)
Lu(t) 1 a 

r

Suppose that E 'is a, meo,surable set u,itlt, 0 < m(E) < co

for each k , and, such that m(E - U G6) : g .

For each set E with finite measure, we let ,trr(f) denote the distribu-
tion function for the Hilbert transform iu. That is, for 0 q t < oo ,

,1"(t) will denote the measure of the set of z for which llr@)l >* t .

Lemma 2. Ior 0(f q oo,

Proof. Since the Hilbert transform is an isometry rvith respect to the
Z2-norm [t],

li,ul' do - iXrl'do - m(E) ,

and (5.2) follows.
Lemma 3. There erists a constant q, , I 4a I 40 , such that for0<r<r,

l.l{.1

(5.3)

Proof. We may assume ttraL m(E) I 0 for otherwise (5.3) is trivial.
Let {Gr} be the sequence of squares of Lemma l. Then by (5.I), we can
choose for each k a measurable set Xt" such that D n GkcI*cG*
and m(E n -Fe) : tm(Ie). If we set 7: U -t'r and G : l) G;", then

(5.4)

Next set

and hence

(5.5)

from (5.2)
bound for

rn(G) <rn(E) - tm@)

I

§. If l|,u@)i>t, thenclearly ii,r@)l )s or ln@)l >t-§,
we obtain

m(E\
Lu(t) { ir(s) + m(H) < ä * mW)

and (5.4). The rest of the argument involves getting an upper
m(H) .

t

Z



For this choose I < r { oo , let Vn be a disk with center at' zx and'

radius r 16 , where z* arrd 2r1" ate the center and diametet of G*, and

let Y : lJ Vr". Since h: 0 a.e. outside of -[' and since

{-l 
*' : + {-l 

xud'o - {rl',d' 
: + m(t n tn) - m(xk) : s

for each ft , we have

n (") : - * + I I ^*, 
(*,, - a - "L,) 

*
, - -rr-

lf zL.Vx and we Ft, then

l r\, - *+o:, =T ;-.(J;* - * (##, ̂
)): 

a r,r,

F. W. Gnunrwe and E, Rorou, Area distortion uncler quasiconformal mappings 1I

and hence u'e obtain

(5.6)

Obviously

n rz m(E\

and we conclude that

I 4 I I r \ \rn(E)

tn(,)l < li,n(2, Ilw@)tdo
Fp

for zC 7. Now

I I,-o,* = I I i*(z)do: r(* +,"*å),
c(v) c(v*)

whilesince 0<r<I,

| | wwn d,o : 2(r - t) m(r*) I 2m(xp) .

Fh

Combining these inequalities with (5.a) and (5'6) yields

(r - s) m(H - r, = | | fi1ao <- (* +be*)4?
c(v)
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If we take r : L.7 and s - .4 , then (5.5) and (5.7) imply that (5.3)
holds with a : 40. Next if ,E is any disk, then it is easy to verify that
for 0(t<1,

t_t
LE(t): t tn(E).

Hence we must haye a ) I in (5.3), and the proof of Lemma 3 is complete.
The proof of Theorem 2 is now an immediate consequence of Lemmas 2

and 3. n'or let Lu,u$) denote the measure of thesetof z € [/ forwhich
lir@)l > f . Then Lu.u(t) ( min (n , Äs(t)) ,

€ m(Ellr 1 @

ll tr,to,: | ^,.u(t)dt= | nd,t! l*Pdt+ lTo,o 

n 

m(E)ln I

: a m(E) lo9 
nx@) { 2m(E) ,

and we obtain (a.I) with a: 40 and b : 2 . If Z' is anv rlisk in Li
with center at the origin, then

I I 11, I do : rn(E) tog -!- .
J rJ " rn(E) '

and hence we must have a ) I and ä > 0 in (a.f). This completes the
proof of Theorem 2.

6. Remarlcs. On the basis of examples and heuristic reasoning: wo
conjecture that there exists a function ö(7() and a constant ö for which
Theorems I and 2 hold, respectively, with a : I . Unfortunately, we have
not been able to prove this. However, it is perhaps worth pointing out that
the lower bound of values of a for which Theorem I holds is equal to the
corresponding lower bound for Theorem 2, and that if either of these
theorems holds with a equal to this common lower bound, then so does the
other. These facts are immediate consequences of the following result.

Theorem 3. If a and, b are constants for whi,ch the conclusion of Theoreru,
2 holil,s, then there erists a function b(K) , of the form | + O(K - \ as
K --> I , such that the conclusion of Theorem t hold,s for a and, b(K) . Con-
aersely, i,f a is a constant and, b(K) a function, of theform I + O(1( - 1)

as K-->1, for which the concl,usi,on of Theorem t holils, then there exists
a constant b such that the conclusion of Theorem 2 hold,s for a anil, b .

Proof. The first part of Theorem 3 follor,vs directly from the argument
given in section 4. X'or the second part, assume that a is a constant and
b(K) a function for which the conclusions of Theorem I hold, and let

L2
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b(K\ - L

(6.1) d:limsup K_, {oo.

We want to exhibit a constant Ö such that

(6.2) I ltr,ld,o'<am(E)t s-*fujibm(E)
U

for all measurable sets .E c U . We do this in two steps.

Suppose first that ,E lies in A A ä. Next set a-r : rt, in U , and
extend co to J2 so that it satisfies a symmetry condition like (1.3)a.e.

Then for 0 < , < oo let g : g@, f) be the e'-quasiconformal mapping

of D which has

,(* , t)- (sgn *(z)) tanf, j

xdilatationandisnormalizedsothat g(0 ,t) __ 0 , g(L ,t):1,
)-@Asinsection2,gsatisfies(2.s),wherer(0,t)

ez" g - $(sgnar) (sgn(9,)').

(g(R , t)), then as in section 3,

dA 
= IlReTpcto+ 

,f 
lRerp" 

do,
'tt 

- 
s(E , t) s(E , t)

as its comple
and g( co , t
4(1 , t): 0 ,

(6.3)

If A(t) - m,

(6.4)

where fr is tne Hilbert transform of cp : 2 e ,Xu, and lRe y,l < t in

Pl a !2, where c is the absolute constant in (3.5).

Norr if we apply Theorem L Lo g and E , we have

t(t) 
=bk)(ry@)\"-''xt \1t /

for 0 ( t I q, and letting t-->0, we obtain

dA xt
(6.5) dt (0) < am(E)tos *@)l ilm(E) ,

where d is as in (6.1). Setting f : 0 in (6.a) yields

(6.6) fftot- I I Reg(z,o)do-cm(E),
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and we conclude from (6.5) and (6.6) that

(6.2) I I ".Q 
x,d,o < am(E)t r r,(+E { bom(E) ,

where bo:ald,. Since g(2,0):2, we§eefrom (6.3) lhab g(2,0)
: (sgn a(z)) tu@). Hence by (3.7) ,

(68) | | w,t*: I I r,eqi,* : I I Reg 14ud,o,

and (6.2) follows from (6.7) and (6.8) with Ö : bo .

Now suppose that .O is any measurable set in [/ . Then we can de-
compose E into z disjoint measurable sets .E* so that n I 8 and each
.Er, lies in a disk with radius $ and center zo . By what was proved above,

(6.e) ll,r,rtdo<am(E*)bsffirbom(En),
Up

From the concavity of the function rlog - it follows that

n?t?v
(6.11) 7 m(Dr")t"S 

,o@r) 
< r,l(E)l"e *@) * (log n) m(E) ,

and if *" ,rfw sum over fr from L to n, we obtain (6.2) from (6.9),
(6.10), and (6.11) with å : bo + 4 {- a(log 8) . This completes the proof
of Theorem 3.

Harvard University University of Minnesota

Stanford University

where t/r is the disk lz - zt"l < | . Since clearly iirrl < ! m.(86) in

U - U*, we have

(6.10) I l,r,-td,o1 I ltr,rtdo)-ant(Et").uuu
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