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Area distortion under quasiconformal mappings 1)

1. Introduction. Suppose that f is a sense-preserving plane quasi-
conformal mapping, in the sense of Ahlfors and Pfluger, of a domain D .
Then it foliows from the work of Mori [10] and Morrey [11] that f pre-
serves sets of plane measure zeroin D, thatis,if £ € D and m(E) = 0,
then m(f(E)) = 0. (See also [6] and [12].) In connection with deeper
studies of the degree of regularity of quasiconformal mappings, it is of
interest to investigate to what extent one can say that m(f(¥)) is small
whenever m(E) is small. Obviously this problem is meaningful only if
J 1s normalized in some way. For example, one might require that f map
the unit disk U onto itself so that f(0) = 0. With this normalization,
Bojarski [3] made the following observation. There exist a pair of func-
tions of K, a(K)> 0 and b(K)> 0, such that if [ is K-quasiconfor-
mal, then

a(K)
(L.1) IE) < b(K) <—~>
7
for each measurable set E c U .
Bojarski derived inequality (1.1) from an important theorem on the
integrability of the derivatives of quasiconformal mappings. This latter
result was established by him using a fundamental inequality, due to
Calder6n and Zygmund [4], which relates the L, norms of a function and
its Hilbert transform. In the present paper we shall use a parametric re-
presentation?) for quasiconformal mappings, similar to Loewner’s representa.-
tion for conformal mappings, to study the above mentioned problem ab ovo
and to prove the following slightly more precise form of (1.1).
Theorem 1. There exists a constant a and a function b(K), where
1 <a<40, B(K)>0, and BK)=1+4+OK —1) as K—>1, such
that, if f is a K-quasiconformal mapping of U onto itself with f(0) =0,
then

, K—¢
(1.2) e bl < b(K) <@>

7 n
for each measurable set E c U .
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In a recent paper [8], Lehto has studied the integrability question for
plane quasiconformal mappings. Using his results, one also can show that
there exist a pair of functions a(X) and b6(K) for which (1.1) holds, where
a(K) = K™ and a is a constant, a = 1. However, this method does
not yield an explicit upper bound for the best possible @, nor does it give
much information about the function b(K) .

Now suppose that f is a K-quasiconformal mapping of U onto itself,
normalized so that f(0) =0 and f(1) = 1. Then we can extend f by
reflection in U to obtain a K-quasiconformal mapping of the extended
plane Q with f(o0) = oo . The complex dilatation u = f./f, will satisfy
the symmetry condition

(1.3) n(z) = p(1j2)22

a.e. in the finite plane 2. For convenience of notation, we let Sg denote
the class of all such mappings f. In the proof of Theorem 1, it is obviously
sufficient to consider only f € Sk .

2. The parametric represeniation. We shall establish Theorem 1 using a
parametric representation, first derived by Shah Dao-shing in [5]. How-
ever, since this paper is relatively inaccessible, we first show how this
representation can be obtained from some recent results due to Ahlfors
and Bers [2].

Suppose that f is in Sx and has complex dilatation ux, and set

t
(2.1)  »(z,t) = (sgn u(z)) tanh (F arctanh | u(z) ]) , T =log K ,
w
where sgn w = Tl if w#0,00 and sgn w=0 if w=0 or .
w

Next let ¢ = g(z, t) be the quasiconformal mapping of Q which has v
as its complex dilatation and is normalized so that ¢(0 ,t) =0, g(1,t)=1,
and g(oo, t) = co. Since »(z, 0) =0 and »(z, T) = u(z) , we see that
gz, 0) =2z and ¢(z, T) = f(z) . Moreover from (2.1) it is obvious that »
satisfies a symmetry condition like (1.3), and hence ¢ maps U onto itself
for each ¢. From (2.1) we have

oy
[v(z, t+Ad8) —vE,t) — = (z,0)At] <114t 2,

ot
where
ov arctanh || o
2.2) L
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oy | o |
Since o is continuous in ¢ and | B < %, Theorem 10 of [2] implies
/ | !

that

ag g(Z,t+At)—g(2,t)
(z t) = lim
A0 A t

9%
uniformly on each compact set in £, that " has generalized derivati-

ves with respect to z and Z which are locally L2-integrable, that

) lg.(z,t + 48 —g.(z,1) (Pg) 2
lm// At e =0
\ t+At — og\ 2
hm//g ) g:(z , 1) <_9>‘ dre .

A0 ot )z |

for each compact set £ c 2, and that

(2.3)

89) <8g> ov
20 (@) —(2) 4+ 2.
cg g . .
Now set ¢ = 5 ° gl = = (971, t). Then ( has generalized deri-
og
vatives which are locally L2—integrable — =Cog=2{_(g,1t), and by the
chain rule
29 _ (% _

@) (5] = ogg+ Goom (5) = Cong+ Goo.

(See, for example, Lemma 10 of [2].) Since g¢. = »g., combining (2.2),
(2.4), and (2.5) yields

X . cv 1 ) arctanh |u] )
(2.6)  Seg = e sgn(g:)* = (sgn p) ——5— — sgn(g.)* .

In particular, we see that | .| <1 in 2. Also since ¢(0,t) = 0 and
g(l,¢) =1, we have {(0,¢t) = {(1,¢) = 0, while the fact that g maps
U onto itself implies that

(2.7) Re <

for z€0U .
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Finally, since f(z) = g(z, T'), we may think of f as being generated
as a solution of the differential equation

o9
(2.8) = =@, 2€Q,0<t<T,

13

subject to the initial condition g¢(z, 0) =z, where ( satisfies the above
listed conditions. This is essentially the parametric representation derived
by Shah Dao-shing in [5] for smooth mappings in Sk .

3. Rate of change of area. Now suppose that E is a measurable set in
U and that f € Sy . Nextlet g be defined as in section 2 and set

A(t) = m(g(E , 1)) = // (Ig:2 — lg:*)do

Then A(0) = m(E), A(T) = m(f(E)), and our problem is to obtain an
upper bound for A(7T) in terms of A(0). From (2.3), (2.5), and the
Schwarz inequality it follows that

/]( (z,t+ At) P—ig.(z HPFlgs(z,t+ AP — Egz-(z,t){z)
— = lim do
At—>0 At y

—2f / el () - 7 (5))
_ / / Re(z, - g) (10. — Ig:?) da

=2//Re;dor.

g(E,1)

(3.1)

We may interpret this formula by thinking of ¢ as a flow on £ which
carries U onto itself. The velocity profile of this flow is given by (2.8),
and hence the outward normal component of the flow across dg(E , t) at
a point z € dg(¥ , t) is equal to

N 1 dz R <1 ? dz)
S(z>t)z \d‘ © i .,(Z,t) EdZ; s

where dz is parallel to the tangent vector to dg(E , t) at z. Thus if ¢
is sufficiently smooth and if £ has a piecewise smooth boundary, the
total outward flow across dg(Z , t) is given by
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Re ( ]cdz)=oRe(/f:,da).

g(E 1)

Since this total outward flow is just the rate of change of 4, we have an
alternative derivation for formula (3.1).
Now since £, is bounded in £, we have

z

1 1 1
(3.2) l(z,t) =wp(z,t) — ;// Co(w ’t)<J2 — ;) do ,
U

where o is continuous in U and analyticin U for 0 <¢ <7 . Since
£(0,t) =0, it follows that (0, t) = 0. Thus y/z is analyticin U,
and from (2.7) we obtain

p(z, 1) 1 z
(3.3) Re(7> = Re(; [[ C(w, ©) m do‘)

for z € 2 U . The function on the right hand side of (3.3) is also analytic
in U, and hence we conclude that

(3.4) w(z, 1) ——//C )da—i—zz@()

for z€ U and 0 <t < T, where O isreal and continuous. Since |{;] <3
in U, there exists an absolute constant ¢ > 0 such that

(3. Re pate, )] <5

whenever |z <1 and 0 <t <T.
From (3.1) and (3.2) we obtain

(3.6) //Reqzda—}—Qf/ Re y. do,

g(E,t)

where ¢ is the Hllber’c transform of ¢ =2 {; Xy,

(p(z’t):{l_?;— // (w — 2)?

s 2

and X, is the characteristic function of U . It is not difficult to verify
that

(3.7) f/&hdo:// (pI;dU
o Q
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whenever £ is bounded and has compact support. Hence if we take
h = %y, , we obtain

(3.8) dt —[fth(E t)|d0+2f/ Re y. do

&(E. 1)

from (3.6) and (3.7).

4. Proof of Theorem 1. In order to make use of (3.8), we must appeal
to the following inequality, which is implicit in the work of Calderén and
Zygmund [4] and which will be established in section 5.

Theorem 2. There exist a pair of constants a and b, 1 <a <40 and
0<b<2, such that

(4.1) //mlda<am( B)log 1. )+bm< )

for each measurable set E c U .

We now complete the proof of Theorem 1 in two steps. Suppose first
that E is a measurable set in |z| < 8. Then since g is a K-quasicon-
formal mapping of U onto itself with ¢g(0,t) =0, ¢g(¥ ,¢) liesin [z <1
by a well known distortion theorem due to Hersch and Pfluger [7]. From
(3.5), (3.8), and (4.1) we have

dA< Al b A
= 0“A+(+0)

for 0 <t < T, and with a change of variables and integration we obtain

A(t) (b—kc )(A(o»f“
(4.2) < exp p (I —e™ J|— .

7 7
Setting ¢ = 7' in (4.2) then gives (1.2) with b(K) = by(K), where
b

(4.3) by(K) = exp( ‘- K*“)) — 14 (G40 (K—1)+oK —1)

as K—1.
Next suppose that E is any measurable set in U, and for each/,
1<l< oo, let V be the disk |z2] <<l and set

m = min |[f(z)], M = max |f(z)
la|=t1 |z|=1

Then it is easy to verify that
(4.4) m <X, M > VK
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while by a distortion theorem due to Lehto, Virtanen, and Vaiséla [9],
(4.5) M < MK)m

where A(K) =1+ 0K —1) as K—>1. Let &~ map U conformally
onto f(V) sothat 2(0) = 0. Then the Schwarz Lemma applied to 27(mz)
and to h )/M implies that

(4.6) [ h(z) | = m | 2]
and, with (4.6), that

1 h(z)/MP (M — m)
(4.7) () =M ;17 <M+ ——F
for z € YU). .

Now set [ = I(K) = max (8 3> A(K))*. Then (4.4) and (4.5) imply

that m > 3+ , and with (4.7) we conclude that
M2
(4.8) )P do < M\ | m(h o f(H))
Whef(E)

If we apply what was proved earlier to the K-quasiconformal mapping
fol) = k1o f(lz), we obtain

m~ e ) _ K <m(E)>K‘“

a2

(4.9) -

where by(K) is as in (4.3). Finally combining (4.4), (4.5), (4.8), and (4.9)
yields (1.2) with

(4.10) b(K) = by(K)A (K)t PEET

Since each factor on the right hand side of (4.10) is of the form 1 4 O(K —1)
as K —1, we conclude that b(K) is also of this form.

We have established (1.2) with @ = 40 . If f(z) = (sgn z) |z|"% andif
E is any disk in U with center at the origin, then

m(f(£)) (m(E )>”K

T

. 7T

and hence we must have a > 1 in (1.2). Thus assuming Theorem 2, we
have completed the proof of Theorem 1.

5. Proof of Theorem 2. It remains for us to establish Theorem 2. We
begin by quoting a special case of a result used by Calderén and Zygmund
(Lemma 1 of [4]).
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Lemma 1. Suppose that E is a measurable set with 0 << m(E) << o
and that 0 <t << 4. Then there exists a sequence of nonoverlapping squares
{Gy} such that
(5-1) . m(Gy) — !
for each k, and such that m(E — U G,) =

For each set E with finite measure, we let Ag(f) denote the distribu-
tion function for the Hilbert transform yj. That is, for 0 <t < oo,
Jg(t) will denote the measure of the set of z for which |yg(z)] >¢.

Lemma 2. For 0 <t << o,

m(E)
(5.2) Ap(t) < —p

Proof. Since the Hilbert transform is an isometry with respect to the

L2-norm [1],
1) 2 < f [ e as / | e = mia,

and (5.2) follows.

Lemma 3. There exists a constant a, 1 <a <40, such that for
0<t<<l,
m(H)

(5.3) iglt) <a ;

Proof. We may assume that m(E) > 0 for otherwise (5.3) is trivial.
Let {G)} be the sequence of squares of Lemma 1. Then by (5.1), we can
choose for each &k a measurable set F), such that EN G, C F.c G,
and m(E N Fy) =tm (F,). If we set F =UF, and ¢ = UG, , then

(5.4) —m(G) < m(B) = tm(F) .

1
Next set b = 7B AE and for 0 <s <1, let H be the set where

B >1—s. If |75()] >1t, then clearly |74(z)) =s or |h(z)] >1—s,
and hence we obtain

(5.5) Ap(t) < Ap(s) + m(H) <

from (5.2) and (5.4). The rest of the argument involves getting an upper
bound for m(H) .
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For this choose 1 << r < oo, let V, be a disk with center at 2, and
radius 7 7., where z, and 2r, are the center and diameter of G, and
let V=UYV,. Since » = 0 a.e. outside of F and since

1 : 1
//hda:—t-//XEda—~//leo:7m(EﬂF,{)——m(Fk)—_-()
F, F, Fi,

for each k, we have

—“?IZZ// (w—z (zkizv)d"'

If 2¢ V, and w € F,., then

1 1 I 1 < lz — 2] (!Z—Zk] )2> .
n!(w——z)f—(zk—z)%S;;\Z—Zkfi iz—zk[—rk—i— 2 — 2zl — 7 =)

and hence we obtain

(5.6) LOIEPRAO / / h(w)| do
k Py

for z¢ V. Now

[[werao= [ a5 i1

C(v) C(Vy)

while since 0 <t <1,

// [h(w 2(1 — &) m(Fi) < 2m(F%) .

Combining these inequalities with (5.4) and (5.6) yields

- 1 r m(K)
(1-—8)m(H—V)S//\hid0<4<r—j+10g )—_

r—1 t
&y

Obviously

7 12 m(K)
m(HNO V) <m(V)-7m(G)<"7Z72 P

and we conclude that

4 1 r m(E)
(5.7) m(H) < ( + log p— 1) + 2 nﬂ) -

1—s\r—1
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If we take r = 1.7 and s = .4, then (5.5) and (5.7) imply that (5.3)
holds with a = 40 . Next if F is any disk, then it is easy to verify that
for 0 <i<1,

Hence we must have a > 1 in (5.3), and the proof of Lemma 3 is complete.

The proof of Theorem 2 is now an immediate consequence of Lemmas 2
and 3. For let Ay y(f) denote the measure of the set of z € U for which
76(2)] = t. Then g, u(t) < min (7, Ax(t))

o) m(E)/x 1 oo .
// liEida=sz,U(t)dt§ /ndt+/“’”t(E) dt+/m§f)dt
U 0 0 m(E)[x 1
3
= am(E) log (B + 2m(E) ,

and we obtain (4.1) with @ =40 and b=2. If E is any disk in U
with center at the origin, then

e | do = m(E) log
/U/ x o = m( )ogm(E),

and hence we must have ¢ > 1 and b > 0 in (4.1). This completes the
proof of Theorem 2.

6. Remarks. On the basis of examples and heuristic reasoning, we
conjecture that there exists a function b(K) and a constant & for which
Theorems 1 and 2 hold, respectively, with @ = 1. Unfortunately, we have
not been able to prove this. However, it is perhaps worth pointing out that
the lower bound of values of a for which Theorem 1 holds is equal to the
corresponding lower bound for Theorem 2, and that if either of these
theorems holds with @ equal to this common lower bound, then so does the
other. These facts are immediate consequences of the following result.

Theorem 3. If a and b are constants for which the conclusion of Theorem
2 holds, then there exists a function b(K), of the form 1 -+ OK — 1) as
K — 1, such that the conclusion of Theorem 1 holds for a and b(K). Con-
versely, if a is a constant and b(K) a function, of the form 1 + O(K — 1)
as K—1, for which the conclusion of Theorem 1 holds, then there exists
a constant b such that the conclusion of Theorem 2 holds for a and b .

Proof. The first part of Theorem 3 follows directly from the argument
given in section 4. For the second part, assume that a is a constant and
b(K) a function for which the conclusions of Theorem 1 hold, and let
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b(K) —
(6.1) d = lim sup

. << 0.
K1 K_l

We want to exhibit a constant b such that

7| do = am(E) log —
(6.2) [/.AE! o = am(k) log m(E)—i—bm(E)

for all measurable sets  c U . We do this intwosteps.

Suppose first that E lies in [z < 1. Next set o = yz in U, and
extend w to 2 so that it satisfies a symmetry condition like (1.3) a.e.
Then for 0 <t < o let g =g(z, t) be the e-quasiconformal mapping

of Q which has
¢
v(z , t) = (sgn o(z)) tanh >

as its complex dilatation and is normalized so that ¢(0 ,¢) =0, g(1,¢) =1,
and g(co, t) = oo. As in section 2, g satisfies (2.8), where ((0, {) =
(1,t) =0, Re(lfz) =0 for z€ 90U, and

(6.3) Lo g = (sgn o) (sgn(g.)?) .
If A@) = m(g(E' t)), then as in section 3,

(6.4) //Re(pda+2//Rew,da,

g(E.t) g(E,Y

~ C .
where ¢ is the Hilbert transform of ¢ = 2 Xy, and [Rey. < - in

|z < 1, where ¢ is the absolute constant in (3.5).
Now if we apply Theorem 1 to g and E, we have

T T

for 0 <t < oo, and letting t— 0, we obtain

(6.5) (0) < am(E)log

il < + d m(K) ,

£
m(E)

where d is as in (6.1). Setting ¢ = 0 in (6.4) yields

d4 -
(6.6) o (0) > // Re ¢(z,0)do — c m(E) ,
E
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and we conclude from (6.5) and (6.6) that

(6.7) // Re ¢ y,do < a m(E) log m:ZE) + bym(E) ,

where b, =c + d. Since g(z, 0) =z, we see from (6.3) that ¢(z, 0)
= (sgn o(z)) X,(z) . Hence by (3.7),

(6.8) //:XEIdU“ // Retprda—//Re&xEdcr,

and (6.2) follows from (6.7) and (6.8) with b = b, .

Now suppose that F is any measurable set in U . Then we can de-
compose E into n disjoint measurable sets B, so that n << 8 andeach
E;. lies in a disk with radius § and center z.. By what was proved above,

(6.9) //{ %Ek i do < a m(Ey) log m:;,k) + bgm(Ek) ,

U

. 4
where U, is the disk iz — z;] << 1. Since clearly X, | < —m(E) in
: £

U — U, we have
(6.10) //{;}Ek ldo < //1 ;ZEk ldo 4 4 m(Ey) .
U U

7
From the concavity of the function xlog - it follows that

T

m(Ej)

4
< m(E) log m(B) + (log n) m(E) ,
and if we now sum over k from 1 to nm, we obtain (6.2) from (6.9),
(6.10), and (6.11) with b = b, + 4 +- a(log 8) . This completes the proof
of Theorem 3.

(6.11) D' m(Ey) log
1

Harvard University University of Minnesota

Stanford University
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